Step of Proof: fincr_wf |
12,41 |
|
Inference at * 1 4
Iof proof for Lemma fincr wf:
.....eq aux..... NILNIL
1. i :
2. f : {f | i:{z:
| z (
i,j. i < j) i} 
if (i =
0) then
else {f(i - 1)...} fi }
if (i =
0) then
else {f(i - 1)...} fi
Type
by ((AbReduce (-1))
CollapseTHEN (Assert
j:{k:
| k < i} . f(j)
))
C1: .....assertion..... NILNIL
C1: 2. f : {f | i:{z:
| z < i} 
if (i =
0) then
else {f(i - 1)...} fi }
C1:
j:{k:
| k < i} . f(j)
C2:
C2: 2. f : {f | i:{z:
| z < i} 
if (i =
0) then
else {f(i - 1)...} fi }
C2: 3.
j:{k:
| k < i} . f(j)
C2:
if (i =
0) then
else {f(i - 1)...} fi
Type
C.